If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x^2)+3x=0
a = 4; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·4·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*4}=\frac{-6}{8} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*4}=\frac{0}{8} =0 $
| x/2-5=-12-2×/3 | | 8r+2r=70 | | 20=-8/15m-12 | | 21-6p=3p-2 | | 99=4r+5r | | 2x+75+2x-20+x+35=180 | | 27+2x=6(-x+7)-63 | | 2y+3-y=27 | | 3n-8=43 | | 6+3y+4y=+5 | | 3(1+t)=18 | | 3(6x+2=-30 | | x^2-16x=1 | | 7(9+u)=77 | | (4x^)+3x=0 | | 8k-8+3k=-14 | | .25x+89=180 | | 23=x-9=14 | | 5.3-2.7x=3.8-4.2x | | 2+x=23+4x | | (-8x^)=12x-20 | | p-3=100 | | (2x^=50 | | (20x^2)-x-30=0 | | 150/55=h | | 3z+3;z=8 | | (-3x^)=-6x | | .4x+108=180 | | 3x2-8x=3 | | 6(3+v)=36 | | x+60+x+51+80=180 | | 20r+5r+3r−22r=12 |